
George D Salisbury
Managing Consultant
Frankfurt, April 2008

Detecon – your international partner in the consulting market

A unique world of experience: Over 3000 Management- and ICT consultancy projects in 120 countries during the past 36 months.

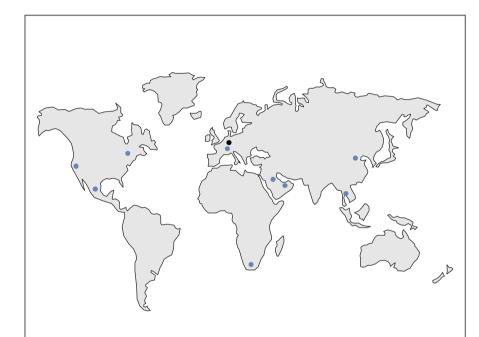
Foundation:

1954 Diebold 1977 DETECON

Restructuring:

2002

Detecon International GmbH


Turnover 2006:

EUR 148 million 650 consultants

Shareholder:

T-Systems Enterprise Services GmbH

Offices in Germany:

Bonn (HQ), Dresden, Eschborn, Munich

International locations:

Abu Dhabi, Bangkok, Johannesburg, Mexico City, Beijing, Reston, Riyadh, San Mateo, Singapore, Zurich

Detecon – your international partner in the consulting market

We support our clients along the entire value chain.

Telco & Digital Media

- Digital Media & Online Services
- Fixed Network Operators
- Investors
- VNOs & Service Providers
- Wireless & Mobile Operators

Enterprise & Services

- Automotive & Manufacturing
- Financial Services
- High Tech Industries
- Travel & Transport
- Utilities

Public Sector

- Development Banks
- Governments
- Regulatory Authorities

A provocative view on IMS and ENUM

IMS and ENUM will probably not achieve the success that they are technically capable of.

IMS and ENUM

- IMS is primarily a network operator view of service delivery.
- The IMS concept was laid down 10 years ago when technology and business models were different to those of today.
- Network operators need Number Portability support far more than they need Public ENUM.

George D. Salisbury

Detecon International GmbH Head of Technology Strategy Group

- 19 years in product development for international vendors.
- 5 years in business and strategy development for an international voice/IP/data service provider.
- 4 years in telecommunications consultancy.

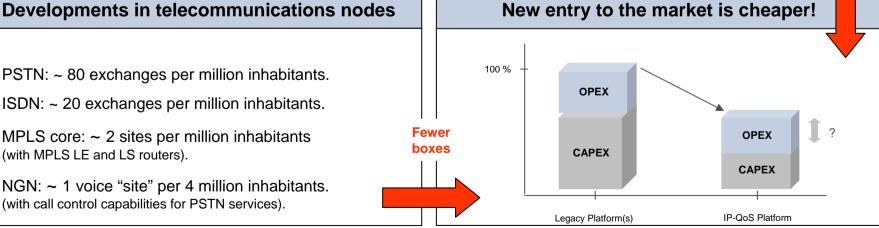
Driver for NGN

The overwhelming reason to change from legacy to NGN technology is operational cost reduction, it is not driven by new services!

The only reason for change is:

to put the business in a **better** position than it would be in if the change were not implemented

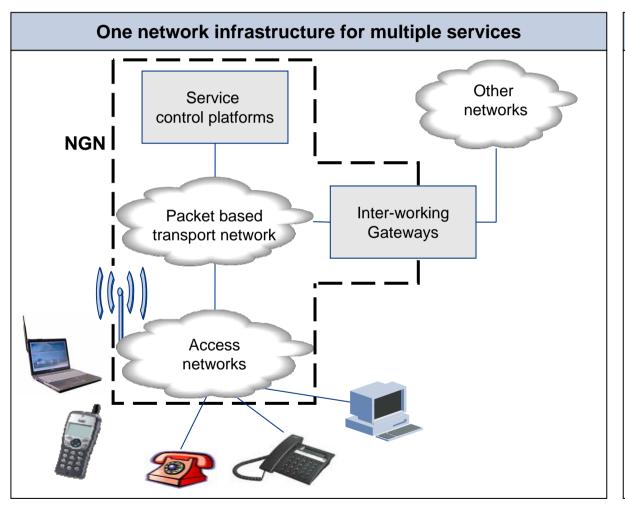
There are two definitions of better:


- New revenue streams.
- Lower cost base for existing revenue streams.

Drivers

- **1997**: 1 Giga Floating Operations per second (GFLOPs) cost about 30,000 US \$.
- **Today**: an off-the-shelf PC provides about 10 GFLOPs for about 300 US \$.
- Price decreases for fiber. IP and Ethernet are also impressive.

- ISDN: ~ 20 exchanges per million inhabitants.
- MPLS core: ~ 2 sites per million inhabitants (with MPLS LE and LS routers).
- NGN: ~ 1 voice "site" per 4 million inhabitants. (with call control capabilities for PSTN services).



Lower costs

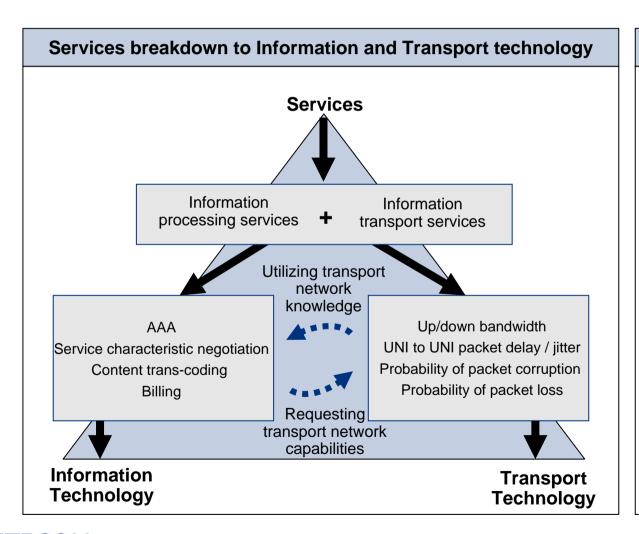
NGN, what is it

Network operators distinguish very clearly between an NGN and the Internet. The Internet is *best-effort* constrained, an NGN is not.

Internet # NGN

NGN, a definition:

The use of a common Transport and Control infrastructure to deliver digital information, between a source and one or more destinations, to one of a set of predefined quality of services.


Characteristics:

- Multi-service capability: voice, IP, TV, data.
- Separation of service from transport.
- Packet based transport.
- Potential for operational expenditure reduction.

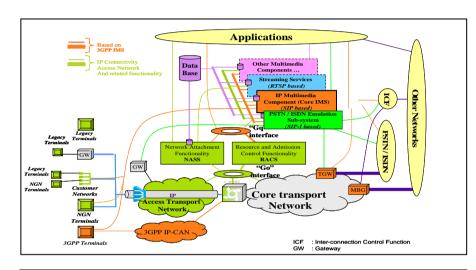
The network operators hopes

Network operators want to use IMS to capitalize on possession of a network.

Network operators goal

Getting the information and transport technology to interact with one another to create a business advantage.

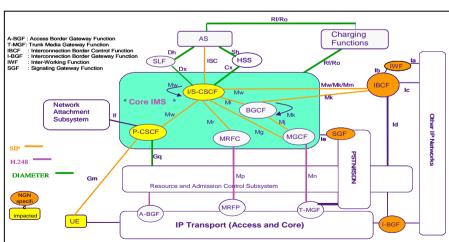
Leveraging on:


- The knowledge that they have.
- The capabilities that they have.

Ideally the business advantage uses transport capabilities that are not readily accessible to 3d party service providers.

IMS architecture

IMS can be viewed as a highly standardized architecture for NGN



IMS: Pros

- Reduced cost of system integration.
- Opportunity for carrier to swap-in swap-out vendors.

IMS: Cons

- A standard does **not imply** existence of an implementation.
- Standardization roadmap might not reflect a given users time-to-market.
- Reduced opportunity for feature/service discrimination.

Graphics source: ETSI

Architectural purity versus pragmatic engineering

Highly standardized architecture does not necessarily mean Open.

Goal versus reality

To minimize the cost of achieving inter-operability across an interface.

The more **exposed** interfaces that a system has, the more likely it is that some-one will push for standardization of that interface.

But: Some vendors are grouping IMS functions on to a common platform thus reducing interface exposure and:

- better use available processing power.
- short-cuts communication between functions (i.e. avoid the full SIP stack).

e.g. I/P/S CSCF on a common processing platform (i.e. no external messages needed between I/P/S).

Cynical (?) observation

Expect to see more IMS functionality being grouped on "monolithic" processing platforms to:

- Take advantage of the continuing advancements in processing power **and** network interface speeds.
- Avoid network based communication between components.
- Inhibit vendor competition.

Different flavors of voice service

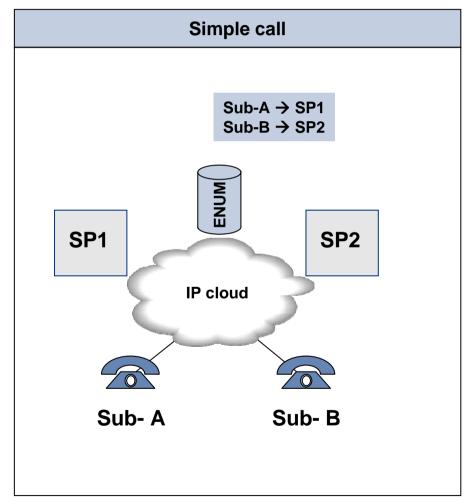
There are three types of voice telecommunication services.

NGN based

- Majority of subscribers will be connected via legacy User Network Interfaces to access devices that are located at the network end of the access circuit. (PSTN Substitution)
- Security considerations place a firewall between the NGN and the Internet.
- IP addresses of the NGN infrastructure are not reachable from the Internet.
- Where the NGN and the Internet share infrastructure they are kept logically separate.

Public ENUM – example

Suppliers of public communications services do not need Public ENUM except to identify the owning service provider i.e. nothing more than Number Portability


Public ENUM

Sub-A and Sub-B both subscribe to services from the service providers SP1 and SP2 respectively.

Sub-A wants to call Sub-B:

- Sub-A can not bypass SP1 and go straight to SP2 without a prior contract (AAA problems).
- SP1 can not bypass SP2 to get to Sub-B because of :
 - Possibility legal interception.
 - Termination services that Sub-B may have from SP2.

Note: PSTN substitution service is even more unfriendly to Public ENUM.

Summary

IMS and Public ENUM face massive hurdles.

Summary - IMS	Summary – Public ENUM
 Tomorrows technology will make today's obsolete. Today's architectures are inappropriate for tomorrows technology. 	 Public ENUM has issues with supporting pay-for-use services. ENUM supported sub-direct-to-sub communications
	bypasses legal interception.
 IMS was laid down 10 years ago. Today's technology has already bypassed IMS architectural drivers. 	Except as a number portability substitute, telecommunications service providers have no reason to like Public ENUM.

My thanks for your time and attention.

For additional details please contact your Detecon representative or

George SALISBURY Head of Group: Technology Strategy

Detecon International GmbH Oberkasseler Str. 2 53227 Bonn (Germany)

Phone: +49 228 700 2971 Fax: +49 228 700 2107 Mobile: +49 160 90753327

e-Mail: George.Salisbury@Detecon.com

Integrated management and technology consulting worldwide

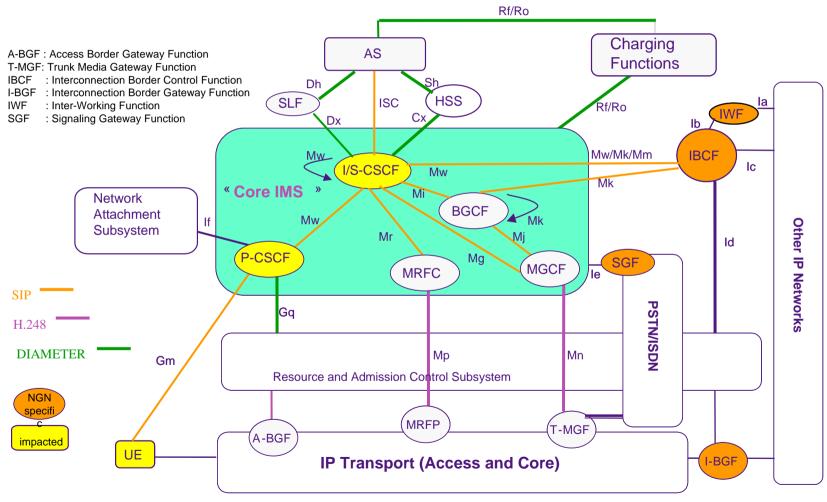

Detecon International GmbH

Oberkasseler Str. 2 53227 Bonn - Germany Phone (+49 228) 700-0

Frankfurter Str. 27 65760 Eschborn - Germany Phone (+49 6196) 903-0

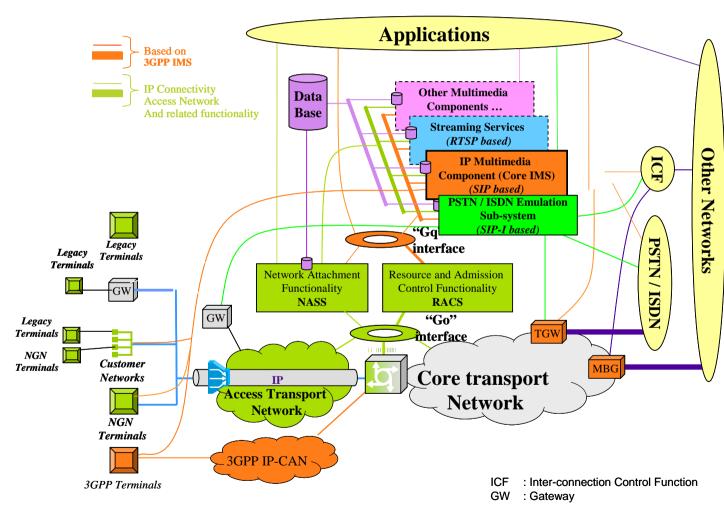
> www.detecon.com info@detecon.com

Supervisory Board: Wilfried Peters (Chair) Management Board: Dr. Klaus Hofmann (Chair), Dieter Brücher Registered at: Court of Bonn HRB 2093 Company location: Bonn



Consulting **DETECON**

Enlargement of graphic used in presentation


TISPAN and IMS

Enlargement of graphic used in presentation

TISPAN and IMS

Source: ETSI

The End

